arduino-mega2560
Constants
const (
A0 Pin = PF0
A1 Pin = PF1
A2 Pin = PF2
A3 Pin = PF3
A4 Pin = PF4
A5 Pin = PF5
A6 Pin = PF6
A7 Pin = PF7
A8 Pin = PK0
A9 Pin = PK1
A10 Pin = PK2
A11 Pin = PK3
A12 Pin = PK4
A13 Pin = PK5
A14 Pin = PK6
A15 Pin = PK7
// Analog Input
ADC0 Pin = PF0
ADC1 Pin = PF1
ADC2 Pin = PF2
ADC3 Pin = PF3
ADC4 Pin = PF4
ADC5 Pin = PF5
ADC6 Pin = PF6
ADC7 Pin = PF7
ADC8 Pin = PK0
ADC9 Pin = PK1
ADC10 Pin = PK2
ADC11 Pin = PK3
ADC12 Pin = PK4
ADC13 Pin = PK5
ADC14 Pin = PK6
ADC15 Pin = PK7
// Digital pins
D0 Pin = PE0
D1 Pin = PE1
D2 Pin = PE4
D3 Pin = PE5
D4 Pin = PG5
D5 Pin = PE3
D6 Pin = PH3
D7 Pin = PH4
D8 Pin = PH5
D9 Pin = PH6
D10 Pin = PB4
D11 Pin = PB5
D12 Pin = PB6
D13 Pin = PB7
D14 Pin = PJ1 // TX3
D15 Pin = PJ0 // RX3
D16 Pin = PH1 // TX2
D17 Pin = PH0 // RX2
D18 Pin = PD3 // TX1
D19 Pin = PD2 // RX1
D20 Pin = PD1
D21 Pin = PD0
D22 Pin = PA0
D23 Pin = PA1
D24 Pin = PA2
D25 Pin = PA3
D26 Pin = PA4
D27 Pin = PA5
D28 Pin = PA6
D29 Pin = PA7
D30 Pin = PC7
D31 Pin = PC6
D32 Pin = PC5
D33 Pin = PC4
D34 Pin = PC3
D35 Pin = PC2
D36 Pin = PC1
D37 Pin = PC0
D38 Pin = PD7
D39 Pin = PG2
D40 Pin = PG1
D41 Pin = PG0
D42 Pin = PL7
D43 Pin = PL6
D44 Pin = PL5
D45 Pin = PL4
D46 Pin = PL3
D47 Pin = PL2
D48 Pin = PL1
D49 Pin = PL0
D50 Pin = PB3
D51 Pin = PB2
D52 Pin = PB1
D53 Pin = PB0
AREF Pin = NoPin
LED Pin = PB7
)
const (
UART_TX_PIN Pin = UART0_TX_PIN
UART_RX_PIN Pin = UART0_RX_PIN
UART0_TX_PIN Pin = D1
UART0_RX_PIN Pin = D0
UART1_TX_PIN Pin = D18
UART1_RX_PIN Pin = D19
UART2_TX_PIN Pin = D16
UART2_RX_PIN Pin = D17
UART3_TX_PIN Pin = D14
UART3_RX_PIN Pin = D15
)
UART pins
const (
TWI_FREQ_100KHZ = 100000
TWI_FREQ_400KHZ = 400000
)
TWI_FREQ is the I2C bus speed. Normally either 100 kHz, or 400 kHz for high-speed bus.
Deprecated: use 100 * machine.KHz or 400 * machine.KHz instead.
const Device = deviceName
Device is the running program’s chip name, such as “ATSAMD51J19A” or “nrf52840”. It is not the same as the CPU name.
The constant is some hardcoded default value if the program does not target a particular chip but instead runs in WebAssembly for example.
const (
KHz = 1000
MHz = 1000_000
GHz = 1000_000_000
)
Generic constants.
const NoPin = Pin(0xff)
NoPin explicitly indicates “not a pin”. Use this pin if you want to leave one of the pins in a peripheral unconfigured (if supported by the hardware).
const (
PA0 = portA + 0
PA1 = portA + 1
PA2 = portA + 2
PA3 = portA + 3
PA4 = portA + 4
PA5 = portA + 5
PA6 = portA + 6
PA7 = portA + 7
PB0 = portB + 0
PB1 = portB + 1
PB2 = portB + 2
PB3 = portB + 3
PB4 = portB + 4
PB5 = portB + 5
PB6 = portB + 6
PB7 = portB + 7
PC0 = portC + 0
PC1 = portC + 1
PC2 = portC + 2
PC3 = portC + 3
PC4 = portC + 4
PC5 = portC + 5
PC6 = portC + 6
PC7 = portC + 7
PD0 = portD + 0
PD1 = portD + 1
PD2 = portD + 2
PD3 = portD + 3
PD7 = portD + 7
PE0 = portE + 0
PE1 = portE + 1
PE3 = portE + 3
PE4 = portE + 4
PE5 = portE + 5
PE6 = portE + 6
PF0 = portF + 0
PF1 = portF + 1
PF2 = portF + 2
PF3 = portF + 3
PF4 = portF + 4
PF5 = portF + 5
PF6 = portF + 6
PF7 = portF + 7
PG0 = portG + 0
PG1 = portG + 1
PG2 = portG + 2
PG5 = portG + 5
PH0 = portH + 0
PH1 = portH + 1
PH3 = portH + 3
PH4 = portH + 4
PH5 = portH + 5
PH6 = portH + 6
PJ0 = portJ + 0
PJ1 = portJ + 1
PK0 = portK + 0
PK1 = portK + 1
PK2 = portK + 2
PK3 = portK + 3
PK4 = portK + 4
PK5 = portK + 5
PK6 = portK + 6
PK7 = portK + 7
PL0 = portL + 0
PL1 = portL + 1
PL2 = portL + 2
PL3 = portL + 3
PL4 = portL + 4
PL5 = portL + 5
PL6 = portL + 6
PL7 = portL + 7
)
const (
PinInput PinMode = iota
PinInputPullup
PinOutput
)
const (
Mode0 = 0
Mode1 = 1
Mode2 = 2
Mode3 = 3
)
SPI phase and polarity configs CPOL and CPHA
const (
// ParityNone means to not use any parity checking. This is
// the most common setting.
ParityNone UARTParity = iota
// ParityEven means to expect that the total number of 1 bits sent
// should be an even number.
ParityEven
// ParityOdd means to expect that the total number of 1 bits sent
// should be an odd number.
ParityOdd
)
Variables
var (
UART1 = &_UART1
_UART1 = UART{
Buffer: NewRingBuffer(),
dataReg: avr.UDR1,
baudRegH: avr.UBRR1H,
baudRegL: avr.UBRR1L,
statusRegA: avr.UCSR1A,
statusRegB: avr.UCSR1B,
statusRegC: avr.UCSR1C,
}
UART2 = &_UART2
_UART2 = UART{
Buffer: NewRingBuffer(),
dataReg: avr.UDR2,
baudRegH: avr.UBRR2H,
baudRegL: avr.UBRR2L,
statusRegA: avr.UCSR2A,
statusRegB: avr.UCSR2B,
statusRegC: avr.UCSR2C,
}
UART3 = &_UART3
_UART3 = UART{
Buffer: NewRingBuffer(),
dataReg: avr.UDR3,
baudRegH: avr.UBRR3H,
baudRegL: avr.UBRR3L,
statusRegA: avr.UCSR3A,
statusRegB: avr.UCSR3B,
statusRegC: avr.UCSR3C,
}
)
var (
ErrTimeoutRNG = errors.New("machine: RNG Timeout")
ErrClockRNG = errors.New("machine: RNG Clock Error")
ErrSeedRNG = errors.New("machine: RNG Seed Error")
ErrInvalidInputPin = errors.New("machine: invalid input pin")
ErrInvalidOutputPin = errors.New("machine: invalid output pin")
ErrInvalidClockPin = errors.New("machine: invalid clock pin")
ErrInvalidDataPin = errors.New("machine: invalid data pin")
ErrNoPinChangeChannel = errors.New("machine: no channel available for pin interrupt")
)
var I2C0 *I2C = nil
I2C0 is the only I2C interface on most AVRs.
var DefaultUART = UART0
Always use UART0 as the serial output.
var (
// UART0 is the hardware serial port on the AVR.
UART0 = &_UART0
_UART0 = UART{
Buffer: NewRingBuffer(),
dataReg: avr.UDR0,
baudRegH: avr.UBRR0H,
baudRegL: avr.UBRR0L,
statusRegA: avr.UCSR0A,
statusRegB: avr.UCSR0B,
statusRegC: avr.UCSR0C,
}
)
UART
var SPI0 = SPI{
spcr: avr.SPCR,
spdr: avr.SPDR,
spsr: avr.SPSR,
sck: PB1,
sdo: PB2,
sdi: PB3,
cs: PB0}
SPI configuration
var (
ErrPWMPeriodTooLong = errors.New("pwm: period too long")
)
var Serial = DefaultUART
Serial is implemented via the default (usually the first) UART on the chip.
var (
ErrTxInvalidSliceSize = errors.New("SPI write and read slices must be same size")
errSPIInvalidMachineConfig = errors.New("SPI port was not configured properly by the machine")
)
func CPUFrequency
func CPUFrequency() uint32
Return the current CPU frequency in hertz.
func InitADC
func InitADC()
InitADC initializes the registers needed for ADC.
func InitSerial
func InitSerial()
func NewRingBuffer
func NewRingBuffer() *RingBuffer
NewRingBuffer returns a new ring buffer.
type ADC
type ADC struct {
Pin Pin
}
func (ADC) Configure
func (a ADC) Configure(ADCConfig)
Configure configures a ADCPin to be able to be used to read data.
func (ADC) Get
func (a ADC) Get() uint16
Get returns the current value of a ADC pin, in the range 0..0xffff. The AVR has an ADC of 10 bits precision so the lower 6 bits will be zero.
type ADCConfig
type ADCConfig struct {
Reference uint32 // analog reference voltage (AREF) in millivolts
Resolution uint32 // number of bits for a single conversion (e.g., 8, 10, 12)
Samples uint32 // number of samples for a single conversion (e.g., 4, 8, 16, 32)
}
ADCConfig holds ADC configuration parameters. If left unspecified, the zero value of each parameter will use the peripheral’s default settings.
type I2C
type I2C struct {
}
I2C on AVR.
func (*I2C) Configure
func (i2c *I2C) Configure(config I2CConfig) error
Configure is intended to setup the I2C interface.
func (*I2C) ReadRegister
func (i2c *I2C) ReadRegister(address uint8, register uint8, data []byte) error
ReadRegister transmits the register, restarts the connection as a read operation, and reads the response.
Many I2C-compatible devices are organized in terms of registers. This method is a shortcut to easily read such registers. Also, it only works for devices with 7-bit addresses, which is the vast majority.
func (*I2C) Tx
func (i2c *I2C) Tx(addr uint16, w, r []byte) error
Tx does a single I2C transaction at the specified address. It clocks out the given address, writes the bytes in w, reads back len(r) bytes and stores them in r, and generates a stop condition on the bus.
func (*I2C) WriteRegister
func (i2c *I2C) WriteRegister(address uint8, register uint8, data []byte) error
WriteRegister transmits first the register and then the data to the peripheral device.
Many I2C-compatible devices are organized in terms of registers. This method is a shortcut to easily write to such registers. Also, it only works for devices with 7-bit addresses, which is the vast majority.
type I2CConfig
type I2CConfig struct {
Frequency uint32
}
I2CConfig is used to store config info for I2C.
type NullSerial
type NullSerial struct {
}
NullSerial is a serial version of /dev/null (or null router): it drops everything that is written to it.
func (NullSerial) Buffered
func (ns NullSerial) Buffered() int
Buffered returns how many bytes are buffered in the UART. It always returns 0 as there are no bytes to read.
func (NullSerial) Configure
func (ns NullSerial) Configure(config UARTConfig) error
Configure does nothing: the null serial has no configuration.
func (NullSerial) ReadByte
func (ns NullSerial) ReadByte() (byte, error)
ReadByte always returns an error because there aren’t any bytes to read.
func (NullSerial) Write
func (ns NullSerial) Write(p []byte) (n int, err error)
Write is a no-op: none of the data is being written and it will not return an error.
func (NullSerial) WriteByte
func (ns NullSerial) WriteByte(b byte) error
WriteByte is a no-op: the null serial doesn’t write bytes.
type PDMConfig
type PDMConfig struct {
Stereo bool
DIN Pin
CLK Pin
}
type PWMConfig
type PWMConfig struct {
// PWM period in nanosecond. Leaving this zero will pick a reasonable period
// value for use with LEDs.
// If you want to configure a frequency instead of a period, you can use the
// following formula to calculate a period from a frequency:
//
// period = 1e9 / frequency
//
Period uint64
}
PWMConfig allows setting some configuration while configuring a PWM peripheral. A zero PWMConfig is ready to use for simple applications such as dimming LEDs.
type Pin
type Pin uint8
Pin is a single pin on a chip, which may be connected to other hardware devices. It can either be used directly as GPIO pin or it can be used in other peripherals like ADC, I2C, etc.
func (Pin) Configure
func (p Pin) Configure(config PinConfig)
Configure sets the pin to input or output.
func (Pin) Get
func (p Pin) Get() bool
Get returns the current value of a GPIO pin when the pin is configured as an input or as an output.
func (Pin) High
func (p Pin) High()
High sets this GPIO pin to high, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to high that is not configured as an output pin.
func (Pin) Low
func (p Pin) Low()
Low sets this GPIO pin to low, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to low that is not configured as an output pin.
func (Pin) PortMaskClear
func (p Pin) PortMaskClear() (*volatile.Register8, uint8)
Return the register and mask to disable a given port. This can be used to implement bit-banged drivers.
Warning: there are no separate pin set/clear registers on the AVR. The returned mask is only valid as long as no other pin in the same port has been changed.
func (Pin) PortMaskSet
func (p Pin) PortMaskSet() (*volatile.Register8, uint8)
Return the register and mask to enable a given GPIO pin. This can be used to implement bit-banged drivers.
Warning: there are no separate pin set/clear registers on the AVR. The returned mask is only valid as long as no other pin in the same port has been changed.
func (Pin) Set
func (p Pin) Set(value bool)
Set changes the value of the GPIO pin. The pin must be configured as output.
type PinConfig
type PinConfig struct {
Mode PinMode
}
type PinMode
type PinMode uint8
PinMode sets the direction and pull mode of the pin. For example, PinOutput sets the pin as an output and PinInputPullup sets the pin as an input with a pull-up.
type RingBuffer
type RingBuffer struct {
rxbuffer [bufferSize]volatile.Register8
head volatile.Register8
tail volatile.Register8
}
RingBuffer is ring buffer implementation inspired by post at https://www.embeddedrelated.com/showthread/comp.arch.embedded/77084-1.php
func (*RingBuffer) Clear
func (rb *RingBuffer) Clear()
Clear resets the head and tail pointer to zero.
func (*RingBuffer) Get
func (rb *RingBuffer) Get() (byte, bool)
Get returns a byte from the buffer. If the buffer is empty, the method will return a false as the second value.
func (*RingBuffer) Put
func (rb *RingBuffer) Put(val byte) bool
Put stores a byte in the buffer. If the buffer is already full, the method will return false.
func (*RingBuffer) Used
func (rb *RingBuffer) Used() uint8
Used returns how many bytes in buffer have been used.
type SPI
type SPI struct {
// The registers for the SPIx port set by the chip
spcr *volatile.Register8
spdr *volatile.Register8
spsr *volatile.Register8
// The io pins for the SPIx port set by the chip
sck Pin
sdi Pin
sdo Pin
cs Pin
}
SPI is for the Serial Peripheral Interface Data is taken from http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf page 169 and following
func (SPI) Configure
func (s SPI) Configure(config SPIConfig) error
Configure is intended to setup the SPI interface.
func (SPI) Transfer
func (s SPI) Transfer(b byte) (byte, error)
Transfer writes the byte into the register and returns the read content
func (SPI) Tx
func (spi SPI) Tx(w, r []byte) error
Tx handles read/write operation for SPI interface. Since SPI is a syncronous write/read interface, there must always be the same number of bytes written as bytes read. The Tx method knows about this, and offers a few different ways of calling it.
This form sends the bytes in tx buffer, putting the resulting bytes read into the rx buffer. Note that the tx and rx buffers must be the same size:
spi.Tx(tx, rx)
This form sends the tx buffer, ignoring the result. Useful for sending “commands” that return zeros until all the bytes in the command packet have been received:
spi.Tx(tx, nil)
This form sends zeros, putting the result into the rx buffer. Good for reading a “result packet”:
spi.Tx(nil, rx)
type SPIConfig
type SPIConfig struct {
Frequency uint32
LSBFirst bool
Mode uint8
}
SPIConfig is used to store config info for SPI.
type UART
type UART struct {
Buffer *RingBuffer
dataReg *volatile.Register8
baudRegH *volatile.Register8
baudRegL *volatile.Register8
statusRegA *volatile.Register8
statusRegB *volatile.Register8
statusRegC *volatile.Register8
}
UART on the AVR.
func (*UART) Buffered
func (uart *UART) Buffered() int
Buffered returns the number of bytes currently stored in the RX buffer.
func (*UART) Configure
func (uart *UART) Configure(config UARTConfig)
Configure the UART on the AVR. Defaults to 9600 baud on Arduino.
func (*UART) Read
func (uart *UART) Read(data []byte) (n int, err error)
Read from the RX buffer.
func (*UART) ReadByte
func (uart *UART) ReadByte() (byte, error)
ReadByte reads a single byte from the RX buffer. If there is no data in the buffer, returns an error.
func (*UART) Receive
func (uart *UART) Receive(data byte)
Receive handles adding data to the UART’s data buffer. Usually called by the IRQ handler for a machine.
func (*UART) Write
func (uart *UART) Write(data []byte) (n int, err error)
Write data to the UART.
func (*UART) WriteByte
func (uart *UART) WriteByte(c byte) error
WriteByte writes a byte of data to the UART.
type UARTConfig
type UARTConfig struct {
BaudRate uint32
TX Pin
RX Pin
}
UARTConfig is a struct with which a UART (or similar object) can be configured. The baud rate is usually respected, but TX and RX may be ignored depending on the chip and the type of object.
type UARTParity
type UARTParity uint8
UARTParity is the parity setting to be used for UART communication.