microbit

Constants

const HasLowFrequencyCrystal = false

The micro:bit does not have a 32kHz crystal on board.

const (
	P0	= P0_03
	P1	= P0_02
	P2	= P0_01
	P3	= P0_04
	P4	= P0_05
	P5	= P0_17
	P6	= P0_12
	P7	= P0_11
	P8	= P0_18
	P9	= P0_10
	P10	= P0_06
	P11	= P0_26
	P12	= P0_20
	P13	= P0_23
	P14	= P0_22
	P15	= P0_21
	P16	= P0_16
)

GPIO/Analog pins

const (
	BUTTONA	= P0_17
	BUTTONB	= P0_26
	BUTTON	= BUTTONA
)

Buttons on the micro:bit (A and B)

const (
	UART_TX_PIN	= P0_24
	UART_RX_PIN	= P0_25
)

UART pins

const (
	ADC0	= P0_03	// P0 on the board
	ADC1	= P0_02	// P1 on the board
	ADC2	= P0_01	// P2 on the board
)

ADC pins

const (
	SDA_PIN	= P0_30	// P20 on the board
	SCL_PIN	= P0_00	// P19 on the board
)

I2C pins

const (
	SPI0_SCK_PIN	= P0_23	// P13 on the board
	SPI0_SDO_PIN	= P0_21	// P15 on the board
	SPI0_SDI_PIN	= P0_22	// P14 on the board
)

SPI pins

const (
	LED_COL_1	= P0_04
	LED_COL_2	= P0_05
	LED_COL_3	= P0_06
	LED_COL_4	= P0_07
	LED_COL_5	= P0_08
	LED_COL_6	= P0_09
	LED_COL_7	= P0_10
	LED_COL_8	= P0_11
	LED_COL_9	= P0_12
	LED_ROW_1	= P0_13
	LED_ROW_2	= P0_14
	LED_ROW_3	= P0_15
)

LED matrix pins

const (
	P0_00	Pin	= 0
	P0_01	Pin	= 1
	P0_02	Pin	= 2
	P0_03	Pin	= 3
	P0_04	Pin	= 4
	P0_05	Pin	= 5
	P0_06	Pin	= 6
	P0_07	Pin	= 7
	P0_08	Pin	= 8
	P0_09	Pin	= 9
	P0_10	Pin	= 10
	P0_11	Pin	= 11
	P0_12	Pin	= 12
	P0_13	Pin	= 13
	P0_14	Pin	= 14
	P0_15	Pin	= 15
	P0_16	Pin	= 16
	P0_17	Pin	= 17
	P0_18	Pin	= 18
	P0_19	Pin	= 19
	P0_20	Pin	= 20
	P0_21	Pin	= 21
	P0_22	Pin	= 22
	P0_23	Pin	= 23
	P0_24	Pin	= 24
	P0_25	Pin	= 25
	P0_26	Pin	= 26
	P0_27	Pin	= 27
	P0_28	Pin	= 28
	P0_29	Pin	= 29
	P0_30	Pin	= 30
	P0_31	Pin	= 31
)

Hardware pins

const (
	TWI_FREQ_100KHZ	= 100000
	TWI_FREQ_400KHZ	= 400000
)

TWI_FREQ is the I2C bus speed. Normally either 100 kHz, or 400 kHz for high-speed bus.

Deprecated: use 100 * machine.KHz or 400 * machine.KHz instead.

const Device = deviceName

Device is the running program’s chip name, such as “ATSAMD51J19A” or “nrf52840”. It is not the same as the CPU name.

The constant is some hardcoded default value if the program does not target a particular chip but instead runs in WebAssembly for example.

const (
	KHz	= 1000
	MHz	= 1000_000
	GHz	= 1000_000_000
)

Generic constants.

const NoPin = Pin(0xff)

NoPin explicitly indicates “not a pin”. Use this pin if you want to leave one of the pins in a peripheral unconfigured (if supported by the hardware).

const (
	PinInput		PinMode	= (nrf.GPIO_PIN_CNF_DIR_Input << nrf.GPIO_PIN_CNF_DIR_Pos) | (nrf.GPIO_PIN_CNF_INPUT_Connect << nrf.GPIO_PIN_CNF_INPUT_Pos)
	PinInputPullup		PinMode	= PinInput | (nrf.GPIO_PIN_CNF_PULL_Pullup << nrf.GPIO_PIN_CNF_PULL_Pos)
	PinInputPulldown	PinMode	= PinInput | (nrf.GPIO_PIN_CNF_PULL_Pulldown << nrf.GPIO_PIN_CNF_PULL_Pos)
	PinOutput		PinMode	= (nrf.GPIO_PIN_CNF_DIR_Output << nrf.GPIO_PIN_CNF_DIR_Pos) | (nrf.GPIO_PIN_CNF_INPUT_Connect << nrf.GPIO_PIN_CNF_INPUT_Pos)
)
const (
	PinRising	PinChange	= nrf.GPIOTE_CONFIG_POLARITY_LoToHi
	PinFalling	PinChange	= nrf.GPIOTE_CONFIG_POLARITY_HiToLo
	PinToggle	PinChange	= nrf.GPIOTE_CONFIG_POLARITY_Toggle
)

Pin change interrupt constants for SetInterrupt.

const (
	Mode0	= 0
	Mode1	= 1
	Mode2	= 2
	Mode3	= 3
)

SPI phase and polarity configs CPOL and CPHA

const (
	// ParityNone means to not use any parity checking. This is
	// the most common setting.
	ParityNone	UARTParity	= iota

	// ParityEven means to expect that the total number of 1 bits sent
	// should be an even number.
	ParityEven

	// ParityOdd means to expect that the total number of 1 bits sent
	// should be an odd number.
	ParityOdd
)

Variables

var DefaultUART = UART0
var (
	ErrTimeoutRNG		= errors.New("machine: RNG Timeout")
	ErrClockRNG		= errors.New("machine: RNG Clock Error")
	ErrSeedRNG		= errors.New("machine: RNG Seed Error")
	ErrInvalidInputPin	= errors.New("machine: invalid input pin")
	ErrInvalidOutputPin	= errors.New("machine: invalid output pin")
	ErrInvalidClockPin	= errors.New("machine: invalid clock pin")
	ErrInvalidDataPin	= errors.New("machine: invalid data pin")
	ErrNoPinChangeChannel	= errors.New("machine: no channel available for pin interrupt")
)
var (
	// UART0 is the hardware UART on the NRF SoC.
	_UART0	= UART{Buffer: NewRingBuffer()}
	UART0	= &_UART0
)

UART

var (
	I2C0	= (*I2C)(unsafe.Pointer(nrf.TWI0))
	I2C1	= (*I2C)(unsafe.Pointer(nrf.TWI1))
)

There are 2 I2C interfaces on the NRF.

var (
	SPI0	= SPI{Bus: nrf.SPI0}
	SPI1	= SPI{Bus: nrf.SPI1}
)

There are 2 SPI interfaces on the NRF51.

var (
	ErrPWMPeriodTooLong = errors.New("pwm: period too long")
)
var Serial = DefaultUART

Serial is implemented via the default (usually the first) UART on the chip.

var (
	ErrTxInvalidSliceSize		= errors.New("SPI write and read slices must be same size")
	errSPIInvalidMachineConfig	= errors.New("SPI port was not configured properly by the machine")
)

func CPUFrequency

func CPUFrequency() uint32

func GetRNG

func GetRNG() (ret uint32, err error)

GetRNG returns 32 bits of non-deterministic random data based on internal thermal noise. According to Nordic’s documentation, the random output is suitable for cryptographic purposes.

func InitADC

func InitADC()

InitADC initializes the registers needed for ADC.

func InitSerial

func InitSerial()

func NewRingBuffer

func NewRingBuffer() *RingBuffer

NewRingBuffer returns a new ring buffer.

func ReadTemperature

func ReadTemperature() int32

ReadTemperature reads the silicon die temperature of the chip. The return value is in milli-celsius.

type ADC

type ADC struct {
	Pin Pin
}

func (ADC) Configure

func (a ADC) Configure(ADCConfig)

Configure configures an ADC pin to be able to read analog data.

func (ADC) Get

func (a ADC) Get() uint16

Get returns the current value of a ADC pin in the range 0..0xffff.

type ADCConfig

type ADCConfig struct {
	Reference	uint32	// analog reference voltage (AREF) in millivolts
	Resolution	uint32	// number of bits for a single conversion (e.g., 8, 10, 12)
	Samples		uint32	// number of samples for a single conversion (e.g., 4, 8, 16, 32)
}

ADCConfig holds ADC configuration parameters. If left unspecified, the zero value of each parameter will use the peripheral’s default settings.

type I2C

type I2C struct {
	Bus nrf.TWI_Type
}

I2C on the NRF.

func (*I2C) Configure

func (i2c *I2C) Configure(config I2CConfig) error

Configure is intended to setup the I2C interface.

func (*I2C) ReadRegister

func (i2c *I2C) ReadRegister(address uint8, register uint8, data []byte) error

ReadRegister transmits the register, restarts the connection as a read operation, and reads the response.

Many I2C-compatible devices are organized in terms of registers. This method is a shortcut to easily read such registers. Also, it only works for devices with 7-bit addresses, which is the vast majority.

func (*I2C) Tx

func (i2c *I2C) Tx(addr uint16, w, r []byte) (err error)

Tx does a single I2C transaction at the specified address. It clocks out the given address, writes the bytes in w, reads back len(r) bytes and stores them in r, and generates a stop condition on the bus.

func (*I2C) WriteRegister

func (i2c *I2C) WriteRegister(address uint8, register uint8, data []byte) error

WriteRegister transmits first the register and then the data to the peripheral device.

Many I2C-compatible devices are organized in terms of registers. This method is a shortcut to easily write to such registers. Also, it only works for devices with 7-bit addresses, which is the vast majority.

type I2CConfig

type I2CConfig struct {
	Frequency	uint32
	SCL		Pin
	SDA		Pin
}

I2CConfig is used to store config info for I2C.

type NullSerial

type NullSerial struct {
}

NullSerial is a serial version of /dev/null (or null router): it drops everything that is written to it.

func (NullSerial) Buffered

func (ns NullSerial) Buffered() int

Buffered returns how many bytes are buffered in the UART. It always returns 0 as there are no bytes to read.

func (NullSerial) Configure

func (ns NullSerial) Configure(config UARTConfig) error

Configure does nothing: the null serial has no configuration.

func (NullSerial) ReadByte

func (ns NullSerial) ReadByte() (byte, error)

ReadByte always returns an error because there aren’t any bytes to read.

func (NullSerial) Write

func (ns NullSerial) Write(p []byte) (n int, err error)

Write is a no-op: none of the data is being written and it will not return an error.

func (NullSerial) WriteByte

func (ns NullSerial) WriteByte(b byte) error

WriteByte is a no-op: the null serial doesn’t write bytes.

type PDMConfig

type PDMConfig struct {
	Stereo	bool
	DIN	Pin
	CLK	Pin
}

type PWMConfig

type PWMConfig struct {
	// PWM period in nanosecond. Leaving this zero will pick a reasonable period
	// value for use with LEDs.
	// If you want to configure a frequency instead of a period, you can use the
	// following formula to calculate a period from a frequency:
	//
	//     period = 1e9 / frequency
	//
	Period uint64
}

PWMConfig allows setting some configuration while configuring a PWM peripheral. A zero PWMConfig is ready to use for simple applications such as dimming LEDs.

type Pin

type Pin uint8

Pin is a single pin on a chip, which may be connected to other hardware devices. It can either be used directly as GPIO pin or it can be used in other peripherals like ADC, I2C, etc.

func (Pin) Configure

func (p Pin) Configure(config PinConfig)

Configure this pin with the given configuration.

func (Pin) Get

func (p Pin) Get() bool

Get returns the current value of a GPIO pin when the pin is configured as an input or as an output.

func (Pin) High

func (p Pin) High()

High sets this GPIO pin to high, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to high that is not configured as an output pin.

func (Pin) Low

func (p Pin) Low()

Low sets this GPIO pin to low, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to low that is not configured as an output pin.

func (Pin) PortMaskClear

func (p Pin) PortMaskClear() (*uint32, uint32)

Return the register and mask to disable a given port. This can be used to implement bit-banged drivers.

func (Pin) PortMaskSet

func (p Pin) PortMaskSet() (*uint32, uint32)

Return the register and mask to enable a given GPIO pin. This can be used to implement bit-banged drivers.

func (Pin) Set

func (p Pin) Set(high bool)

Set the pin to high or low. Warning: only use this on an output pin!

func (Pin) SetInterrupt

func (p Pin) SetInterrupt(change PinChange, callback func(Pin)) error

SetInterrupt sets an interrupt to be executed when a particular pin changes state. The pin should already be configured as an input, including a pull up or down if no external pull is provided.

This call will replace a previously set callback on this pin. You can pass a nil func to unset the pin change interrupt. If you do so, the change parameter is ignored and can be set to any value (such as 0).

type PinChange

type PinChange uint8

type PinConfig

type PinConfig struct {
	Mode PinMode
}

type PinMode

type PinMode uint8

PinMode sets the direction and pull mode of the pin. For example, PinOutput sets the pin as an output and PinInputPullup sets the pin as an input with a pull-up.

type RingBuffer

type RingBuffer struct {
	rxbuffer	[bufferSize]volatile.Register8
	head		volatile.Register8
	tail		volatile.Register8
}

RingBuffer is ring buffer implementation inspired by post at https://www.embeddedrelated.com/showthread/comp.arch.embedded/77084-1.php

func (*RingBuffer) Clear

func (rb *RingBuffer) Clear()

Clear resets the head and tail pointer to zero.

func (*RingBuffer) Get

func (rb *RingBuffer) Get() (byte, bool)

Get returns a byte from the buffer. If the buffer is empty, the method will return a false as the second value.

func (*RingBuffer) Put

func (rb *RingBuffer) Put(val byte) bool

Put stores a byte in the buffer. If the buffer is already full, the method will return false.

func (*RingBuffer) Used

func (rb *RingBuffer) Used() uint8

Used returns how many bytes in buffer have been used.

type SPI

type SPI struct {
	Bus *nrf.SPI_Type
}

SPI on the NRF.

func (SPI) Configure

func (spi SPI) Configure(config SPIConfig)

Configure is intended to setup the SPI interface.

func (SPI) Transfer

func (spi SPI) Transfer(w byte) (byte, error)

Transfer writes/reads a single byte using the SPI interface.

func (SPI) Tx

func (spi SPI) Tx(w, r []byte) error

Tx handles read/write operation for SPI interface. Since SPI is a syncronous write/read interface, there must always be the same number of bytes written as bytes read. The Tx method knows about this, and offers a few different ways of calling it.

This form sends the bytes in tx buffer, putting the resulting bytes read into the rx buffer. Note that the tx and rx buffers must be the same size:

spi.Tx(tx, rx)

This form sends the tx buffer, ignoring the result. Useful for sending “commands” that return zeros until all the bytes in the command packet have been received:

spi.Tx(tx, nil)

This form sends zeros, putting the result into the rx buffer. Good for reading a “result packet”:

spi.Tx(nil, rx)

type SPIConfig

type SPIConfig struct {
	Frequency	uint32
	SCK		Pin
	SDO		Pin
	SDI		Pin
	LSBFirst	bool
	Mode		uint8
}

SPIConfig is used to store config info for SPI.

type UART

type UART struct {
	Buffer *RingBuffer
}

UART on the NRF.

func (*UART) Buffered

func (uart *UART) Buffered() int

Buffered returns the number of bytes currently stored in the RX buffer.

func (*UART) Configure

func (uart *UART) Configure(config UARTConfig)

Configure the UART.

func (*UART) Read

func (uart *UART) Read(data []byte) (n int, err error)

Read from the RX buffer.

func (*UART) ReadByte

func (uart *UART) ReadByte() (byte, error)

ReadByte reads a single byte from the RX buffer. If there is no data in the buffer, returns an error.

func (*UART) Receive

func (uart *UART) Receive(data byte)

Receive handles adding data to the UART’s data buffer. Usually called by the IRQ handler for a machine.

func (*UART) SetBaudRate

func (uart *UART) SetBaudRate(br uint32)

SetBaudRate sets the communication speed for the UART.

func (*UART) Write

func (uart *UART) Write(data []byte) (n int, err error)

Write data to the UART.

func (*UART) WriteByte

func (uart *UART) WriteByte(c byte) error

WriteByte writes a byte of data to the UART.

type UARTConfig

type UARTConfig struct {
	BaudRate	uint32
	TX		Pin
	RX		Pin
}

UARTConfig is a struct with which a UART (or similar object) can be configured. The baud rate is usually respected, but TX and RX may be ignored depending on the chip and the type of object.

type UARTParity

type UARTParity uint8

UARTParity is the parity setting to be used for UART communication.