teensy36
Constants
const (
D00 = PB16
D01 = PB17
D02 = PD00
D03 = PA12
D04 = PA13
D05 = PD07
D06 = PD04
D07 = PD02
D08 = PD03
D09 = PC03
D10 = PC04
D11 = PC06
D12 = PC07
D13 = PC05
D14 = PD01
D15 = PC00
D16 = PB00
D17 = PB01
D18 = PB03
D19 = PB02
D20 = PD05
D21 = PD06
D22 = PC01
D23 = PC02
D24 = PE26
D25 = PA05
D26 = PA14
D27 = PA15
D28 = PA16
D29 = PB18
D30 = PB19
D31 = PB10
D32 = PB11
D33 = PE24
D34 = PE25
D35 = PC08
D36 = PC09
D37 = PC10
D38 = PC11
D39 = PA17
D40 = PA28
D41 = PA29
D42 = PA26
D43 = PB20
D44 = PB22
D45 = PB23
D46 = PB21
D47 = PD08
D48 = PD09
D49 = PB04
D50 = PB05
D51 = PD14
D52 = PD13
D53 = PD12
D54 = PD15
D55 = PD11
D56 = PE10
D57 = PE11
D58 = PE00
D59 = PE01
D60 = PE02
D61 = PE03
D62 = PE04
D63 = PE05
)
digital IO
const LED = PC05
LED on the Teensy
const Device = deviceName
Device is the running program’s chip name, such as “ATSAMD51J19A” or “nrf52840”. It is not the same as the CPU name.
The constant is some hardcoded default value if the program does not target a particular chip but instead runs in WebAssembly for example.
const (
KHz = 1000
MHz = 1000_000
GHz = 1000_000_000
)
Generic constants.
const NoPin = Pin(0xff)
NoPin explicitly indicates “not a pin”. Use this pin if you want to leave one of the pins in a peripheral unconfigured (if supported by the hardware).
const (
PinInput PinMode = iota
PinInputPullup
PinInputPulldown
PinOutput
PinOutputOpenDrain
PinDisable
)
const (
PinInputPullUp = PinInputPullup
PinInputPullDown = PinInputPulldown
)
Deprecated: use PinInputPullup and PinInputPulldown instead.
const (
PA00 Pin = iota
PA01
PA02
PA03
PA04
PA05
PA06
PA07
PA08
PA09
PA10
PA11
PA12
PA13
PA14
PA15
PA16
PA17
PA18
PA19
PA20
PA21
PA22
PA23
PA24
PA25
PA26
PA27
PA28
PA29
)
const (
PB00 Pin = iota + 32
PB01
PB02
PB03
PB04
PB05
PB06
PB07
PB08
PB09
PB10
PB11
_
_
_
_
PB16
PB17
PB18
PB19
PB20
PB21
PB22
PB23
)
const (
PC00 Pin = iota + 64
PC01
PC02
PC03
PC04
PC05
PC06
PC07
PC08
PC09
PC10
PC11
PC12
PC13
PC14
PC15
PC16
PC17
PC18
PC19
)
const (
PD00 Pin = iota + 96
PD01
PD02
PD03
PD04
PD05
PD06
PD07
PD08
PD09
PD10
PD11
PD12
PD13
PD14
PD15
)
const (
PE00 Pin = iota + 128
PE01
PE02
PE03
PE04
PE05
PE06
PE07
PE08
PE09
PE10
PE11
PE12
PE13
PE14
PE15
PE16
PE17
PE18
PE19
PE20
PE21
PE22
PE23
PE24
PE25
PE26
PE27
PE28
)
const (
// ParityNone means to not use any parity checking. This is
// the most common setting.
ParityNone UARTParity = iota
// ParityEven means to expect that the total number of 1 bits sent
// should be an even number.
ParityEven
// ParityOdd means to expect that the total number of 1 bits sent
// should be an odd number.
ParityOdd
)
Variables
var (
TeensyUART1 = UART0
TeensyUART2 = UART1
TeensyUART3 = UART2
TeensyUART4 = UART3
TeensyUART5 = UART4
)
var DefaultUART = UART0
var (
ErrTimeoutRNG = errors.New("machine: RNG Timeout")
ErrClockRNG = errors.New("machine: RNG Clock Error")
ErrSeedRNG = errors.New("machine: RNG Seed Error")
ErrInvalidInputPin = errors.New("machine: invalid input pin")
ErrInvalidOutputPin = errors.New("machine: invalid output pin")
ErrInvalidClockPin = errors.New("machine: invalid clock pin")
ErrInvalidDataPin = errors.New("machine: invalid data pin")
ErrNoPinChangeChannel = errors.New("machine: no channel available for pin interrupt")
)
var (
ErrNotImplemented = errors.New("device has not been implemented")
ErrNotConfigured = errors.New("device has not been configured")
)
var (
UART0 = &_UART0
UART1 = &_UART1
UART2 = &_UART2
UART3 = &_UART3
UART4 = &_UART4
_UART0 = UART{UART_Type: nxp.UART0, SCGC: &nxp.SIM.SCGC4, SCGCMask: nxp.SIM_SCGC4_UART0, DefaultRX: defaultUART0RX, DefaultTX: defaultUART0TX}
_UART1 = UART{UART_Type: nxp.UART1, SCGC: &nxp.SIM.SCGC4, SCGCMask: nxp.SIM_SCGC4_UART1, DefaultRX: defaultUART1RX, DefaultTX: defaultUART1TX}
_UART2 = UART{UART_Type: nxp.UART2, SCGC: &nxp.SIM.SCGC4, SCGCMask: nxp.SIM_SCGC4_UART2, DefaultRX: defaultUART2RX, DefaultTX: defaultUART2TX}
_UART3 = UART{UART_Type: nxp.UART3, SCGC: &nxp.SIM.SCGC4, SCGCMask: nxp.SIM_SCGC4_UART3, DefaultRX: defaultUART3RX, DefaultTX: defaultUART3TX}
_UART4 = UART{UART_Type: nxp.UART4, SCGC: &nxp.SIM.SCGC1, SCGCMask: nxp.SIM_SCGC1_UART4, DefaultRX: defaultUART4RX, DefaultTX: defaultUART4TX}
)
var (
ErrPWMPeriodTooLong = errors.New("pwm: period too long")
)
var Serial = DefaultUART
Serial is implemented via the default (usually the first) UART on the chip.
func CPUFrequency
func CPUFrequency() uint32
CPUFrequency returns the frequency of the ARM core clock (180MHz)
func ClockFrequency
func ClockFrequency() uint32
ClockFrequency returns the frequency of the external oscillator (16MHz)
func InitSerial
func InitSerial()
func NewRingBuffer
func NewRingBuffer() *RingBuffer
NewRingBuffer returns a new ring buffer.
func PollUART
func PollUART(u *UART)
PollUART manually checks a UART status and calls the ISR. This should only be called by runtime.abort.
func PutcharUART
func PutcharUART(u *UART, c byte)
PutcharUART writes a byte to the UART synchronously, without using interrupts or calling the scheduler
type ADC
type ADC struct {
Pin Pin
}
type ADCConfig
type ADCConfig struct {
Reference uint32 // analog reference voltage (AREF) in millivolts
Resolution uint32 // number of bits for a single conversion (e.g., 8, 10, 12)
Samples uint32 // number of samples for a single conversion (e.g., 4, 8, 16, 32)
}
ADCConfig holds ADC configuration parameters. If left unspecified, the zero value of each parameter will use the peripheral’s default settings.
type FastPin
type FastPin struct {
PDOR *volatile.BitRegister
PSOR *volatile.BitRegister
PCOR *volatile.BitRegister
PTOR *volatile.BitRegister
PDIR *volatile.BitRegister
PDDR *volatile.BitRegister
}
func (FastPin) Clear
func (p FastPin) Clear()
func (FastPin) Read
func (p FastPin) Read() bool
func (FastPin) Set
func (p FastPin) Set()
func (FastPin) Toggle
func (p FastPin) Toggle()
func (FastPin) Write
func (p FastPin) Write(v bool)
type NullSerial
type NullSerial struct {
}
NullSerial is a serial version of /dev/null (or null router): it drops everything that is written to it.
func (NullSerial) Buffered
func (ns NullSerial) Buffered() int
Buffered returns how many bytes are buffered in the UART. It always returns 0 as there are no bytes to read.
func (NullSerial) Configure
func (ns NullSerial) Configure(config UARTConfig) error
Configure does nothing: the null serial has no configuration.
func (NullSerial) ReadByte
func (ns NullSerial) ReadByte() (byte, error)
ReadByte always returns an error because there aren’t any bytes to read.
func (NullSerial) Write
func (ns NullSerial) Write(p []byte) (n int, err error)
Write is a no-op: none of the data is being written and it will not return an error.
func (NullSerial) WriteByte
func (ns NullSerial) WriteByte(b byte) error
WriteByte is a no-op: the null serial doesn’t write bytes.
type PDMConfig
type PDMConfig struct {
Stereo bool
DIN Pin
CLK Pin
}
type PWMConfig
type PWMConfig struct {
// PWM period in nanosecond. Leaving this zero will pick a reasonable period
// value for use with LEDs.
// If you want to configure a frequency instead of a period, you can use the
// following formula to calculate a period from a frequency:
//
// period = 1e9 / frequency
//
Period uint64
}
PWMConfig allows setting some configuration while configuring a PWM peripheral. A zero PWMConfig is ready to use for simple applications such as dimming LEDs.
type Pin
type Pin uint8
Pin is a single pin on a chip, which may be connected to other hardware devices. It can either be used directly as GPIO pin or it can be used in other peripherals like ADC, I2C, etc.
func (Pin) Configure
func (p Pin) Configure(config PinConfig)
Configure this pin with the given configuration.
func (Pin) Control
func (p Pin) Control() *volatile.Register32
func (Pin) Fast
func (p Pin) Fast() FastPin
func (Pin) Get
func (p Pin) Get() bool
Get returns the current value of a GPIO pin.
func (Pin) High
func (p Pin) High()
High sets this GPIO pin to high, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to high that is not configured as an output pin.
func (Pin) Low
func (p Pin) Low()
Low sets this GPIO pin to low, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to low that is not configured as an output pin.
func (Pin) Set
func (p Pin) Set(value bool)
Set changes the value of the GPIO pin. The pin must be configured as output.
type PinConfig
type PinConfig struct {
Mode PinMode
}
type PinMode
type PinMode uint8
PinMode sets the direction and pull mode of the pin. For example, PinOutput sets the pin as an output and PinInputPullup sets the pin as an input with a pull-up.
type RingBuffer
type RingBuffer struct {
rxbuffer [bufferSize]volatile.Register8
head volatile.Register8
tail volatile.Register8
}
RingBuffer is ring buffer implementation inspired by post at https://www.embeddedrelated.com/showthread/comp.arch.embedded/77084-1.php
func (*RingBuffer) Clear
func (rb *RingBuffer) Clear()
Clear resets the head and tail pointer to zero.
func (*RingBuffer) Get
func (rb *RingBuffer) Get() (byte, bool)
Get returns a byte from the buffer. If the buffer is empty, the method will return a false as the second value.
func (*RingBuffer) Put
func (rb *RingBuffer) Put(val byte) bool
Put stores a byte in the buffer. If the buffer is already full, the method will return false.
func (*RingBuffer) Used
func (rb *RingBuffer) Used() uint8
Used returns how many bytes in buffer have been used.
type UART
type UART struct {
*nxp.UART_Type
SCGC *volatile.Register32
SCGCMask uint32
DefaultRX Pin
DefaultTX Pin
// state
Buffer RingBuffer // RX Buffer
TXBuffer RingBuffer
Configured bool
Transmitting volatile.Register8
Interrupt interrupt.Interrupt
}
func (*UART) Buffered
func (uart *UART) Buffered() int
Buffered returns the number of bytes currently stored in the RX buffer.
func (*UART) Configure
func (u *UART) Configure(config UARTConfig)
Configure the UART.
func (*UART) Disable
func (u *UART) Disable()
func (*UART) Flush
func (u *UART) Flush()
func (*UART) Read
func (uart *UART) Read(data []byte) (n int, err error)
Read from the RX buffer.
func (*UART) ReadByte
func (uart *UART) ReadByte() (byte, error)
ReadByte reads a single byte from the RX buffer. If there is no data in the buffer, returns an error.
func (*UART) Receive
func (uart *UART) Receive(data byte)
Receive handles adding data to the UART’s data buffer. Usually called by the IRQ handler for a machine.
func (*UART) Write
func (uart *UART) Write(data []byte) (n int, err error)
Write data to the UART.
func (*UART) WriteByte
func (u *UART) WriteByte(c byte) error
WriteByte writes a byte of data to the UART.
type UARTConfig
type UARTConfig struct {
BaudRate uint32
TX Pin
RX Pin
}
UARTConfig is a struct with which a UART (or similar object) can be configured. The baud rate is usually respected, but TX and RX may be ignored depending on the chip and the type of object.
type UARTParity
type UARTParity uint8
UARTParity is the parity setting to be used for UART communication.